MathDB
Putnam 1994 B6

Source:

July 13, 2014
Putnammodular arithmeticcollege contests

Problem Statement

For aZa\in \mathbb{Z} define na=101a1002a n_a=101a-100\cdot 2^a Show that, for 0a,b,c,d990\le a,b,c,d\le 99 na+nbnc+nd(mod10100)    {a,b}={c,d} n_a+n_b\equiv n_c+n_d\pmod{10100}\implies \{a,b\}=\{c,d\}