MathDB
Logarithm

Source: 1993 National High School Mathematics League, Exam One, Problem 11

February 27, 2020
logarithms

Problem Statement

Four real numbers x0>x1>x2>x3>0x_0>x_1>x_2>x_3>0, if logx0x11993+logx1x21993+logx2x31993klogx0x31993\log_{\frac{x_0}{x_1}}1993+\log_{\frac{x_1}{x_2}}1993+\log_{\frac{x_2}{x_3}}1993\geq k\cdot\log_{\frac{x_0}{x_3}}1993 for all x0,x1,x2,x3x_0,x_1,x_2,x_3, then the maximum value of kk is________.