MathDB
Problems
Contests
International Contests
IMO Longlists
1977 IMO Longlists
37
Infinite set of solutions [ILL 1977]
Infinite set of solutions [ILL 1977]
Source:
January 11, 2011
number theory unsolved
number theory
Problem Statement
Let
A
1
,
A
2
,
…
,
A
n
+
1
A_1,A_2,\ldots ,A_{n+1}
A
1
,
A
2
,
…
,
A
n
+
1
be positive integers such that
(
A
i
,
A
n
+
1
)
=
1
(A_i,A_{n+1})=1
(
A
i
,
A
n
+
1
)
=
1
for every
i
=
1
,
2
,
…
,
n
i=1,2,\ldots ,n
i
=
1
,
2
,
…
,
n
. Show that the equation
x
1
A
1
+
x
2
A
2
+
…
+
x
n
A
n
=
x
n
+
1
A
n
+
1
x_1^{A_1}+x_2^{A_2}+\ldots + x_n^{A_n}=x_{n+1}^{A_{n+1} }
x
1
A
1
+
x
2
A
2
+
…
+
x
n
A
n
=
x
n
+
1
A
n
+
1
has an infinite set of solutions
(
x
1
,
x
2
,
…
,
x
n
+
1
)
(x_1,x_2,\ldots , x_{n+1})
(
x
1
,
x
2
,
…
,
x
n
+
1
)
in positive integers.
Back to Problems
View on AoPS