Source: 2019 Jozsef Wildt International Math Competition-W. 32
May 19, 2020
SummationSequencesinequalities
Problem Statement
Let uk, vk, ak and bk be non-negative real sequences such as uk>ak and vk>bk, where k=1,2,⋯,n. If 0<m1≤uk≤M1 and 0<m2≤vk≤M2, then k=1∑n(lukvk−akbk)≥(k=1∑n(uk2−ak2))21(k=1∑n(vk2−bk2))21wherel=2m1M1m2M2M1M2+m1m2