MathDB
Inequality

Source: 2016 Taiwan TST Round 2

July 18, 2016
inequalities

Problem Statement

Let x,yx,y be positive real numbers such that x+y=1x+y=1. Prove thatxx2+y3+yx3+y22(xx+y2+yx2+y)\frac{x}{x^2+y^3}+\frac{y}{x^3+y^2}\leq2(\frac{x}{x+y^2}+\frac{y}{x^2+y}).