MathDB
Function Equation With Binomial Coefficient

Source: 2016 Taiwan 1st TST IMO Mock P3

July 10, 2016
functionbinomial coefficientsalgebranumber theorysurjective function

Problem Statement

Let Z+\mathbb{Z}^+ denote the set of all positive integers. Find all surjective functions f:Z+×Z+Z+f:\mathbb{Z}^+ \times \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ that satisfy all of the following conditions: for all a,b,cZ+a,b,c \in \mathbb{Z}^+, (i)f(a,b)a+bf(a,b) \leq a+b; (ii)f(a,f(b,c))=f(f(a,b),c)f(a,f(b,c))=f(f(a,b),c) (iii)Both (f(a,b)a)\binom{f(a,b)}{a} and (f(a,b)b)\binom{f(a,b)}{b} are odd numbers.(where (nk)\binom{n}{k} denotes the binomial coefficients)