MathDB
India proudly presents an ISL sequence

Source: IMO Shortlist 1993, India 1

March 15, 2006
limitalgebraSequencerecurrence relationIMO Shortlist

Problem Statement

Define a sequence f(n)n=1\langle f(n)\rangle^{\infty}_{n=1} of positive integers by f(1)=1f(1) = 1 and f(n)={f(n1)n if f(n1)>n;f(n1)+n if f(n1)n,f(n) = \begin{cases} f(n-1) - n & \text{ if } f(n-1) > n;\\ f(n-1) + n & \text{ if } f(n-1) \leq n, \end{cases} for n2.n \geq 2. Let S={nN    f(n)=1993}.S = \{n \in \mathbb{N} \;\mid\; f(n) = 1993\}.
(i) Prove that SS is an infinite set. (ii) Find the least positive integer in S.S. (iii) If all the elements of SS are written in ascending order as n1<n2<n3<, n_1 < n_2 < n_3 < \ldots , show that limini+1ni=3. \lim_{i\rightarrow\infty} \frac{n_{i+1}}{n_i} = 3.