MathDB
Unique function

Source:

September 1, 2010
functioninductionalgebrafunctional equationIMO ShortlistIMO Longlist

Problem Statement

Given two positive real numbers aa and bb, suppose that a mapping f:R+→R+f : \mathbb R^+ \to \mathbb R^+ satisfies the functional equation f(f(x))+af(x)=b(a+b)x.f(f(x)) + af(x) = b(a + b)x. Prove that there exists a unique solution of this equation.