MathDB
Problems
Contests
International Contests
Baltic Way
2005 Baltic Way
2
Trigonometric inequality
Trigonometric inequality
Source: Baltic Way 2005/2
November 7, 2005
inequalities
trigonometry
algebra proposed
algebra
Problem Statement
Let
α
\alpha
α
,
β
\beta
β
and
γ
\gamma
γ
be three acute angles such that
sin
α
+
sin
β
+
sin
γ
=
1
\sin \alpha+\sin \beta+\sin \gamma = 1
sin
α
+
sin
β
+
sin
γ
=
1
. Show that
tan
2
α
+
tan
2
β
+
tan
2
γ
≥
3
8
.
\tan^{2}\alpha+\tan^{2}\beta+\tan^{2}\gamma \geq \frac{3}{8}.
tan
2
α
+
tan
2
β
+
tan
2
γ
≥
8
3
.
Back to Problems
View on AoPS