MathDB
prod a_i + prod b_i <= prod c_i + prod d_i

Source: Polish MO Recond Round 1991 p1

September 9, 2024
algebrainequalitiesProduct

Problem Statement

The numbers ai a_i , bi b_i , ci c_i , di d_i satisfy the conditions 0ciaibidi 0\leq c_i \leq a_i \leq b_i \leq d_i and ai+bi=ci+di a_i+b_i = c_i+d_i for i=1,2,,n i=1,2 ,\ldots,n. Prove that i=1nai+i=1nbii=1nci+i=1ndi \prod_{i=1}^n a_i + \prod_{i=1}^n b_i \leq \prod_{i=1}^n c_i + \prod_{i=1}^n d_i