MathDB
BMO 2014 SL A4

Source: Balkan MO 2014 Shorltist

October 1, 2016
inequalitiesIMO Shortlist

Problem Statement

A4\boxed{A4}Let m1,m2,m3,n1,n2m_1,m_2,m_3,n_1,n_2 and n3n_3 be positive real numbers such that (m1n1)(m2n2)(m3n3)=m1m2m3n1n2n3(m_1-n_1)(m_2-n_2)(m_3-n_3)=m_1m_2m_3-n_1n_2n_3 Prove that (m1+n1)(m2+n2)(m3+n3)8m1m2m3(m_1+n_1)(m_2+n_2)(m_3+n_3)\geq8m_1m_2m_3