MathDB
Vietnam NMO 2004_4

Source:

October 26, 2008
trigonometrylimitalgebra unsolvedalgebra

Problem Statement

The sequence (x_n)^{\infty}_{n\equal{}1} is defined by x_1 \equal{} 1 and x_{n\plus{}1} \equal{}\frac{(2 \plus{} \cos 2\alpha)x_n \minus{} \cos^2\alpha}{(2 \minus{} 2 \cos 2\alpha)x_n \plus{} 2 \minus{} \cos 2\alpha}, for all nN n \in\mathbb{N}, where α \alpha is a given real parameter. Find all values of α \alpha for which the sequence (yn) (y_n) given by y_n \equal{} \sum_{k\equal{}1}^{n}\frac{1}{2x_k\plus{}1} has a finite limit when n \to \plus{}\infty and find that limit.