MathDB
Problems
Contests
International Contests
JBMO ShortLists
2011 JBMO Shortlist
9
sums with minimums in R
sums with minimums in R
Source: JBMO 2011 Shortlist A9
October 14, 2017
JBMO
algebra
Problem Statement
Let
x
1
,
x
2
,
.
.
.
,
x
n
x_1,x_2, ..., x_n
x
1
,
x
2
,
...
,
x
n
be real numbers satisfying
∑
k
=
1
n
−
1
m
i
n
(
x
k
;
x
k
+
1
)
=
m
i
n
(
x
1
;
x
n
)
\sum_{k=1}^{n-1} min(x_k; x_{k+1}) = min(x_1; x_n)
∑
k
=
1
n
−
1
min
(
x
k
;
x
k
+
1
)
=
min
(
x
1
;
x
n
)
. Prove that
∑
k
=
2
n
−
1
x
k
≥
0
\sum_{k=2}^{n-1} x_k \ge 0
∑
k
=
2
n
−
1
x
k
≥
0
.
Back to Problems
View on AoPS