MathDB
China South East Mathematical Olympiad 2021 Grade11 P8

Source:

August 8, 2021
minimum valuealgebra

Problem Statement

A sequence {zn}\{z_n\} satisfies that for any positive integer i,i, zi{0,1,,9}z_i\in\{0,1,\cdots,9\} and zii1(mod10).z_i\equiv i-1 \pmod {10}. Suppose there is 20212021 non-negative reals x1,x2,,x2021x_1,x_2,\cdots,x_{2021} such that for k=1,2,,2021,k=1,2,\cdots,2021, i=1kxii=1kzi,i=1kxii=1kzi+j=11010j50zk+j.\sum_{i=1}^kx_i\geq\sum_{i=1}^kz_i,\sum_{i=1}^kx_i\leq\sum_{i=1}^kz_i+\sum_{j=1}^{10}\dfrac{10-j}{50}z_{k+j}. Determine the least possible value of i=12021xi2.\sum_{i=1}^{2021}x_i^2.