MathDB
Functional Equation: $f(x^2) - yf(y) = f(x + y)(f(x) - y)$.

Source: 2019 Pan-African Shortlist - A3

January 18, 2021
algebrafunctional equationfunction

Problem Statement

Find all functions f:RRf: \mathbb{R} \to \mathbb{R} such that f(x2)yf(y)=f(x+y)(f(x)y) f\left(x^2\right) - yf(y) = f(x + y) (f(x) - y) for all real numbers xx and yy.