MathDB
Inequality with a condition

Source: Turkish TST 2011 Problem 5

April 10, 2011
inequalitiesinequalities proposed

Problem Statement

Let a,b,ca,b,c be positive real numbers satisfying a2+b2+c23.a^2+b^2+c^2 \geq 3. Prove that
(a+1)(b+2)(b+1)(b+5)+(b+1)(c+2)(c+1)(c+5)+(c+1)(a+2)(a+1)(a+5)32 \frac{(a+1)(b+2)}{(b+1)(b+5)} + \frac{(b+1)(c+2)}{(c+1)(c+5)}+\frac{(c+1)(a+2)}{(a+1)(a+5)} \geq \frac{3}{2}