MathDB
Putnam 1954 A5

Source: Putnam 1954

July 17, 2022
Putnamfunctionlimit

Problem Statement

Let f(x)f(x) be a real-valued function defined for 0<x<1.0<x<1. If limx0f(x)=0    and    f(x)f(x2)=o(x), \lim_{x \to 0} f(x) =0 \;\; \text{and} \;\; f(x) - f \left( \frac{x}{2} \right) =o(x), prove that f(x)=o(x),f(x) =o(x), where we use the O-notation.