MathDB
Turkey NMO 2006 1st Round - P13 (Geometry)

Source:

February 2, 2013
geometrytrigonometry

Problem Statement

Let DD be a point on the side [AB][AB] of the isosceles triangle ABCABC such that AB=AC|AB|=|AC|. The parallel line to BCBC passing through DD intersects ACAC at EE. If m(A^)=20m(\widehat A) = 20^\circ, DE=1|DE|=1, BC=a|BC|=a, and BE=a+1|BE|=a+1, then which of the followings is equal to AB|AB|?
<spanclass=latexbold>(A)</span> 2a<spanclass=latexbold>(B)</span> a2a<spanclass=latexbold>(C)</span> a2+1<spanclass=latexbold>(D)</span> (a+1)2<spanclass=latexbold>(E)</span> a2+a <span class='latex-bold'>(A)</span>\ 2a \qquad<span class='latex-bold'>(B)</span>\ a^2-a \qquad<span class='latex-bold'>(C)</span>\ a^2+1 \qquad<span class='latex-bold'>(D)</span>\ (a+1)^2 \qquad<span class='latex-bold'>(E)</span>\ a^2+a