Source: 1992 National High School Mathematics League, Exam One, Problem 15
February 27, 2020
induction
Problem Statement
n is a natural number, fn(x)=x−x−1xn+1−x−n−1(x=0,±1), let y=x+x1.
(a) Prove that fn+1(x)=yfn(x)−fn−1(x)
(b) Prove with mathematical induction:
fn(x)={yn−Cn−11yn−2+⋯+(−1)iCn−iiyn−2i+⋯+(−1)2n(i=1,2,⋯,2n,n is even)yn−Cn−11yn−2+⋯+(−1)iCn−iiyn−2i+⋯+(−1)2n−1C2n+12n−1y(i=1,2,⋯,2n−1,n is odd).