MathDB
JBMO 2014 #3 -- Inequality

Source:

June 23, 2014
inequalitiesalgebraJBMOHigh school olympiad

Problem Statement

For positive real numbers a,b,ca,b,c with abc=1abc=1 prove that (a+1b)2+(b+1c)2+(c+1a)23(a+b+c+1)\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2}\geq 3(a+b+c+1)