MathDB
Max

Source: Chinese TST 2009 5th P3

April 5, 2009
inequalitiesinequalities proposed

Problem Statement

Let nonnegative real numbers a1,a2,a3,a4 a_{1},a_{2},a_{3},a_{4} satisfy a_{1} \plus{} a_{2} \plus{} a_{3} \plus{} a_{4} \equal{} 1. Prove that max\{\sum_{1}^4{\sqrt {a_{i}^2 \plus{} a_{i}a_{i \minus{} 1} \plus{} a_{i \minus{} 1}^2 \plus{} a_{i \minus{} 1}a_{i \minus{} 2}}},\sum_{1}^4{\sqrt {a_{i}^2 \plus{} a_{i}a_{i \plus{} 1} \plus{} a_{i \plus{} 1}^2 \plus{} a_{i \plus{} 1}a_{i \plus{} 2}}}\}\ge 2. Where for all integers i, a_{i \plus{} 4} \equal{} a_{i} holds.