MathDB
Problems
Contests
Undergraduate contests
IMC
2004 IMC
1
Problem 1 IMC 2004 Macedonia
Problem 1 IMC 2004 Macedonia
Source:
July 25, 2004
IMC
college contests
Problem Statement
Let
S
S
S
be an infinite set of real numbers such that
∣
x
1
+
x
2
+
⋯
+
x
n
∣
≤
1
|x_1+x_2+\cdots + x_n | \leq 1
∣
x
1
+
x
2
+
⋯
+
x
n
∣
≤
1
for all finite subsets
{
x
1
,
x
2
,
…
,
x
n
}
⊂
S
\{x_1,x_2,\ldots,x_n\} \subset S
{
x
1
,
x
2
,
…
,
x
n
}
⊂
S
. Show that
S
S
S
is countable.
Back to Problems
View on AoPS