MathDB
Tournament S.S.D

Source:

June 2, 2021
InInquilityalgebra

Problem Statement

Let a,b,c,da,b,c,d be positive real numbers such that a+b+c+d=1a+b+c+d=1 prove that: (a2a+b+b2b+c+c2c+d+d2d+a)555(ac27)2\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a})^5 \geq 5^5(\frac{ac}{27})^2