MathDB
Putnam 1994 B5

Source:

July 13, 2014
Putnamfloor functioncollege contests

Problem Statement

For each αR\alpha\in \mathbb{R} define fα(x)=αxf_{\alpha}(x)=\lfloor{\alpha x}\rfloor. Let nNn\in \mathbb{N}. Show there exists a real α\alpha such that for 1n1\le \ell \le n : fα(n2)=n2=fα(n2). f_{\alpha}^{\ell}(n^2)=n^2-\ell=f_{\alpha^{\ell}}(n^2). Here fα(x)=(fαfαfα)(x)f^{\ell}_{\alpha}(x)=(f_{\alpha}\circ f_{\alpha}\circ \cdots \circ f_{\alpha})(x) where the composition is carried out \ell times.