MathDB
Problems
Contests
National and Regional Contests
China Contests
(China) National High School Mathematics League
2010 China Second Round Olympiad
3
2010 China Second Round,test 2,problem 3
2010 China Second Round,test 2,problem 3
Source:
February 11, 2012
inequalities proposed
inequalities
Problem Statement
let
n
>
2
n>2
n
>
2
be a fixed integer.positive reals
a
i
≤
1
a_i\le 1
a
i
≤
1
(for all
1
≤
i
≤
n
1\le i\le n
1
≤
i
≤
n
).for all
k
=
1
,
2
,
.
.
.
,
n
k=1,2,...,n
k
=
1
,
2
,
...
,
n
,let
A
k
=
∑
i
=
1
k
a
i
k
A_k=\frac{\sum_{i=1}^{k}a_i}{k}
A
k
=
k
∑
i
=
1
k
a
i
prove that
∣
∑
k
=
1
n
a
k
−
∑
k
=
1
n
A
k
∣
<
n
−
1
2
|\sum_{k=1}^{n}a_k-\sum_{k=1}^{n}A_k|<\frac{n-1}{2}
∣
∑
k
=
1
n
a
k
−
∑
k
=
1
n
A
k
∣
<
2
n
−
1
.
Back to Problems
View on AoPS