MathDB
Perron's criterion

Source: 2023 Viet Nam math olympiad for high school students D2 P5

March 25, 2023
algebra

Problem Statement

Given a polynomialP(x)=xn+an1xn1+...+a1x+a0Z[x]P(x)=x^n+a_{n-1}x^{n-1}+...+a_1x+a_0\in \mathbb{Z}[x] with degree n2n\ge 2 and ao0.a_o\ne 0. Prove that if an1>1+an2+...+a1+a0|a_{n-1}|>1+|a_{n-2}|+...+|a_1|+|a_0|, then P(x)P(x) is irreducible in Z[x].\mathbb{Z}[x].