MathDB
Inequation

Source: VMO 2020 - Day 1-P2

December 27, 2019
inequationinequalitiesvmoalgebra

Problem Statement

a)Leta,b,cRa,b,c\in\mathbb{R} and a2+b2+c2=1a^2+b^2+c^2=1.Prove that: ab+bc+ca22|a-b|+|b-c|+|c-a|\le2\sqrt{2} b) Let a1,a2,..a2019Ra_1,a_2,..a_{2019}\in\mathbb{R} and i=12019ai2=1\sum_{i=1}^{2019}a_i^2=1.Find the maximum of: S=a1a2+a2a3+...+a2019a1S=|a_1-a_2|+|a_2-a_3|+...+|a_{2019}-a_1|