MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN I Problems
11
I 11
I 11
Source:
May 25, 2007
floor function
quadratics
function
pen
Problem Statement
Let
p
p
p
be a prime number of the form
4
k
+
1
4k+1
4
k
+
1
. Show that
∑
i
=
1
p
−
1
(
⌊
2
i
2
p
⌋
−
2
⌊
i
2
p
⌋
)
=
p
−
1
2
.
\sum^{p-1}_{i=1}\left( \left \lfloor \frac{2i^{2}}{p}\right \rfloor-2\left \lfloor \frac{i^{2}}{p}\right \rfloor \right) = \frac{p-1}{2}.
i
=
1
∑
p
−
1
(
⌊
p
2
i
2
⌋
−
2
⌊
p
i
2
⌋
)
=
2
p
−
1
.
Back to Problems
View on AoPS