China Mathematical Olympiad 1992 problem2
Source: China Mathematical Olympiad 1992 problem2
September 30, 2013
inequalitiesquadraticsinequalities unsolved
Problem Statement
Given nonnegative real numbers , let . Prove that the following inequality holds:
\sum^{n}_{i=1}\dfrac{1+x_i}{1+x_{i+1}}\le n+\dfrac{1}{(1+a)^2}\sum^{n}_{i=1}(x_i-a)^2 (x_{n+1}=x_1),
and equality occurs if and only if .