MathDB
Strange sequence

Source: Baltic Way 2005/3

November 7, 2005
algebra proposedalgebra

Problem Statement

Consider the sequence {ak}k1\{a_k\}_{k \geq 1} defined by a1=1a_1 = 1, a2=12a_2 = \frac{1}{2} and ak+2=ak+12ak+1+14akak+1 for k1. a_{k + 2} = a_k + \frac{1}{2}a_{k + 1} + \frac{1}{4a_ka_{k + 1}}\ \textrm{for}\ k \geq 1. Prove that 1a1a3+1a2a4+1a3a5++1a98a100<4. \frac{1}{a_1a_3} + \frac{1}{a_2a_4} + \frac{1}{a_3a_5} + \cdots + \frac{1}{a_{98}a_{100}} < 4.