MathDB
Find the value of this limit

Source: 2019 Jozsef Wildt International Math Competition-W. 7

May 18, 2020
limitintegrationSummationSequencesHarmonic Numbers

Problem Statement

If Ωn=k=1n(1k1k(2x10+3x8+1)cos1(kx)dx)\Omega_n=\sum \limits_{k=1}^n \left(\int \limits_{-\frac{1}{k}}^{\frac{1}{k}}(2x^{10} + 3x^8 + 1)\cos^{-1}(kx)dx\right)Then find Ω=limn(ΩnπHn)\Omega=\lim \limits_{n\to \infty}\left(\Omega_n-\pi H_n\right)