MathDB
Exactly one sequence x_i

Source: Chinese MO 2004

September 25, 2011
functioninductionalgebra proposedalgebra

Problem Statement

For a given real number aa and a positive integer nn, prove that: i) there exists exactly one sequence of real numbers x0,x1,,xn,xn+1x_0,x_1,\ldots,x_n,x_{n+1} such that {x0=xn+1=0,12(xi+xi+1)=xi+xi3a3, i=1,2,,n.\begin{cases} x_0=x_{n+1}=0,\\ \frac{1}{2}(x_i+x_{i+1})=x_i+x_i^3-a^3,\ i=1,2,\ldots,n.\end{cases} ii) the sequence x0,x1,,xn,xn+1x_0,x_1,\ldots,x_n,x_{n+1} in i) satisfies xia|x_i|\le |a| where i=0,1,,n+1i=0,1,\ldots,n+1.
Liang Yengde