MathDB
2020 Team #14

Source:

October 24, 2023
team test

Problem Statement

If ff is a permutation of S={0,1,...,14}S = \{0, 1,..., 14\}, then for integers k1k \ge 1, define fk(x)=f(f...(f(x))...))kapplicationsofff^k(x) =\underbrace{f(f...(f(x))... ))}_{k\,\,\, applications \,\,\, of \,\,\, f} Compute the number of permutations ff of SS such that, for some k1k \ge 1, fk(x)=(x+5)mod15f^k(x) = (x + 5) \mod \,\,\, 15 for all xSx \in S.