MathDB
Putnam 1966 A1

Source:

April 6, 2022
college contests

Problem Statement

Let f(n)f(n) be the sum of the first nn terms of the sequence 0,1,1,2,2,3,3,4,,0,1,1,2,2,3,3,4, \dots, where the nnth term is given by an={n/2if n is even,(n1)/2if n is odd.a_n= \begin{cases} n/2 & \text{if } n \text{ is even,} \\ (n-1)/2 & \text{if } n \text{ is odd.} \end{cases} Show that if xx and yy are positive integers and x>yx>y then xy=f(x+y)f(xy)xy=f(x+y)-f(x-y).