MathDB
sin 5x = 16 sin x sin (x -\pi/5) sin (x +\pi/5) sin (x -2\pi/5) sin (x +2\pi/5)

Source: 1968-69 Germany R4 12.5

October 13, 2024
trigonometryalgebra

Problem Statement

Prove that for all real numbers xx holds: sin5x=16sinxsin(xπ5)sin(x2π5)sin(x+2π5)\sin 5x = 16 \sin x \cdot \sin \left(x -\frac{\pi}{5} \right) \cdot \sin\left(x -\frac{2\pi}{5} \right) \sin \left(x +\frac{2\pi}{5} \right)