MathDB
Problems
Contests
National and Regional Contests
Mongolia Contests
Mongolian Mathematical Olympiad
2002 Mongolian Mathematical Olympiad
Problem 4
Fermat-like nondivisibility
Fermat-like nondivisibility
Source: Mongolian MO 2002 Teachers P4
April 9, 2021
number theory
Problem Statement
Let
p
≥
5
p\ge5
p
≥
5
be a prime number. Prove that there exists
a
∈
{
1
,
2
,
…
,
p
−
2
}
a\in\{1,2,\ldots,p-2\}
a
∈
{
1
,
2
,
…
,
p
−
2
}
satisfying
p
2
∤
a
p
−
1
−
1
p^2\nmid a^{p-1}-1
p
2
∤
a
p
−
1
−
1
and
p
2
∤
(
a
+
1
)
p
−
1
−
1
p^2\nmid(a+1)^{p-1}-1
p
2
∤
(
a
+
1
)
p
−
1
−
1
.
Back to Problems
View on AoPS