MathDB
Putnam 2010 A5

Source:

December 6, 2010
Putnamvectorcollege contests

Problem Statement

Let GG be a group, with operation *. Suppose that
(i) GG is a subset of R3\mathbb{R}^3 (but * need not be related to addition of vectors);
(ii) For each a,bG,\mathbf{a},\mathbf{b}\in G, either a×b=ab\mathbf{a}\times\mathbf{b}=\mathbf{a}*\mathbf{b} or a×b=0\mathbf{a}\times\mathbf{b}=\mathbf{0} (or both), where ×\times is the usual cross product in R3.\mathbb{R}^3.
Prove that a×b=0\mathbf{a}\times\mathbf{b}=\mathbf{0} for all a,bG.\mathbf{a},\mathbf{b}\in G.