MathDB
Find real numbers

Source: China TST 2003

June 29, 2006
algebrapolynomialalgebra unsolved

Problem Statement

Can we find positive reals a1,a2,,a2002a_1, a_2, \dots, a_{2002} such that for any positive integer kk, with 1k20021 \leq k \leq 2002, every complex root zz of the following polynomial f(x)f(x) satisfies the condition Im zRe z|\text{Im } z| \leq |\text{Re } z|, f(x)=ak+2001x2001+ak+2000x2000++ak+1x+ak,f(x)=a_{k+2001}x^{2001}+a_{k+2000}x^{2000}+ \cdots + a_{k+1}x+a_k, where a2002+i=aia_{2002+i}=a_i, for i=1,2,,2001i=1,2, \dots, 2001.