MathDB
Quadratic Function

Source: 2002 National High School Mathematics League, Exam One, Problem 15

March 16, 2020
function

Problem Statement

Quadratic function f(x)=ax2+bx+cf(x)=ax^2+bx+c satisfies that: (1)xR,f(x4)=f(2x),f(x)x(1)\forall x\in\mathbb{R},f(x-4)=f(2-x),f(x)\geq x; (2)x(0,2),f(x)(x+12)2(2)\forall x\in(0,2),f(x)\leq\left(\frac{x+1}{2}\right)^2; (3)minxRf(x)=0(3)\min\limits_{x\in\mathbb{R}}f(x)=0 Find the maximum of m(m>1)m(m>1), satisfying: There exists tRt\in\mathbb{R}, as long as x[1,m]x\in[1,m], then f(x+t)xf(x+t)\leq x.