MathDB
Isotomic points on line joining incenters

Source: International Zhautykov Olympiad 2018/2

January 12, 2018
geometryincenterKvant

Problem Statement

Let N,K,LN,K,L be points on the sides AB,BC,CA\overline{AB}, \overline{BC}, \overline{CA} respectively. Suppose AL=BKAL=BK and CN\overline{CN} is the internal bisector of angle ACBACB. Let PP be the intersection of lines AK\overline{AK} and BL\overline{BL} and let I,JI,J be the incenters of triangles APLAPL and BPKBPK respectively. Let QQ be the intersection of lines IJ\overline{IJ} and CN\overline{CN}. Prove that IP=JQIP=JQ.