MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1961 All Russian Mathematical Olympiad
011
ASU 011 All Russian MO1961 10.1 sequences
ASU 011 All Russian MO1961 10.1 sequences
Source:
June 17, 2019
Sequence
algebra
Problem Statement
Prove that for three arbitrary infinite sequences, of natural numbers
a
1
,
a
2
,
.
.
.
,
a
n
,
.
.
.
a_1,a_2,...,a_n,...
a
1
,
a
2
,
...
,
a
n
,
...
,
b
1
,
b
2
,
.
.
.
,
b
n
,
.
.
.
b_1,b_2,...,b_n,...
b
1
,
b
2
,
...
,
b
n
,
...
,
c
1
,
c
2
,
.
.
.
,
c
n
,
.
.
.
c_1,c_2,...,c_n,...
c
1
,
c
2
,
...
,
c
n
,
...
there exist numbers
p
p
p
and
q
q
q
such, that
a
p
≥
a
q
a_p \ge a_q
a
p
≥
a
q
,
b
p
≥
b
q
b_p \ge b_q
b
p
≥
b
q
and
c
p
≥
c
q
c_p \ge c_q
c
p
≥
c
q
.
Back to Problems
View on AoPS