MathDB
B.Stat & B.Math 2022 - Q9

Source: Indian Statistical Institute (ISI) - B.Stat & B.Math Entrance 2022

May 8, 2022
isiIndian Statistical Institutecomplex numbers2022algebra

Problem Statement

Find the smallest positive real number kk such that the following inequality holds z1++zn1k(z1++zn).\left|z_{1}+\ldots+z_{n}\right| \geqslant \frac{1}{k}\big(\left|z_{1}\right|+\ldots+\left|z_{n}\right|\big) . for every positive integer n2n \geqslant 2 and every choice z1,,znz_{1}, \ldots, z_{n} of complex numbers with non-negative real and imaginary parts.
[Hint: First find kk that works for n=2n=2. Then show that the same kk works for any n2n \geqslant 2.]