MathDB
Miklós Schweitzer 2001 Problem 6

Source:

February 12, 2017
Miklos SchweitzerfunctioninequalitiesFunctional inequalityreal analysiscollege contests

Problem Statement

Let IRI\subset \mathbb R be a non-empty open interval, ε0\varepsilon\geq 0 and f ⁣:IRf\colon I\rightarrow\mathbb R a function satisfying the f(tx+(1t)y)tf(x)+(1t)f(y)+εt(1t)xyf(tx+(1-t)y)\leq tf(x)+(1-t)f(y)+\varepsilon t(1-t)|x-y| inequality for all x,yIx,y\in I and t[0,1]t\in [0,1]. Prove that there exists a convex g ⁣:IRg\colon I\rightarrow\mathbb R function, such that the function l:=fgl :=f-g has the ε\varepsilon-Lipschitz property, that is l(x)l(y)εxy for all x,yI|l(x)-l(y)|\leq \varepsilon|x-y|\text{ for all }x,y\in I