For a natural number n denote by Map (n) the set of all functions f:{1,2,3,⋯,n}→{1,2,3,⋯,n}. For f,g∈ Map(n),f∘g denotes the function in Map (n) that sends x→f(g(x)). \\
\\
(a) Let f∈ Map (n). If for all x∈{1,2,3,⋯,n}f(x)=x, show that f∘f=f
\\(b) Count the number of functions f∈ Map (n) such that f∘f=f