MathDB
sequence bounded iff series converges

Source: Miklos Schweitzer 2020, Problem 7

December 1, 2020
analysisreal analysis

Problem Statement

Let p(n)0p(n)\geq 0 for all positive integers nn. Furthermore, x(0)=0,v(0)=1x(0)=0, v(0)=1, and x(n)=x(n1)+v(n1),v(n)=v(n1)p(n)x(n)(n=1,2,).x(n)=x(n-1)+v(n-1), \qquad v(n)=v(n-1)-p(n)x(n) \qquad (n=1,2,\dots). Assume that v(n)0v(n)\to 0 in a decreasing manner as nn \to \infty. Prove that the sequence x(n)x(n) is bounded if and only if n=1np(n)<\sum_{n=1}^{\infty}n\cdot p(n)<\infty.