MathDB
n_i | (2^n_(i-1) - 1)

Source: Turkey TST 1990 - P6

September 11, 2013
abstract algebrainductionnumber theory proposednumber theory

Problem Statement

Let k2k\geq 2 and n1,,nkZ+n_1, \dots, n_k \in \mathbf{Z}^+. If n2(2n11)n_2 | (2^{n_1} -1), n3(2n21)n_3 | (2^{n_2} -1), \dots, nk(2nk11)n_k | (2^{n_{k-1}} -1), n1(2nk1)n_1 | (2^{n_k} -1), show that n1==nk=1n_1 = \dots = n_k =1.