MathDB
Trigonometric inequality - ILL 1966

Source:

September 25, 2010
inequalitiestrigonometrygeometric inequalityIMO ShortlistIMO Longlist

Problem Statement

Prove the inequality tanπsinx4sinα+tanπcosx4cosα>1\tan \frac{\pi \sin x}{4\sin \alpha} + \tan \frac{\pi \cos x}{4\cos \alpha} >1 for any x,αx, \alpha with 0xπ20 \leq x \leq \frac{\pi }{2} and π6<α<π3.\frac{\pi}{6} < \alpha < \frac{\pi}{3}.