MathDB
Problems
Contests
International Contests
IMO Shortlist
1966 IMO Shortlist
5
Trigonometric inequality - ILL 1966
Trigonometric inequality - ILL 1966
Source:
September 25, 2010
inequalities
trigonometry
geometric inequality
IMO Shortlist
IMO Longlist
Problem Statement
Prove the inequality
tan
π
sin
x
4
sin
α
+
tan
π
cos
x
4
cos
α
>
1
\tan \frac{\pi \sin x}{4\sin \alpha} + \tan \frac{\pi \cos x}{4\cos \alpha} >1
tan
4
sin
α
π
sin
x
+
tan
4
cos
α
π
cos
x
>
1
for any
x
,
α
x, \alpha
x
,
α
with
0
≤
x
≤
π
2
0 \leq x \leq \frac{\pi }{2}
0
≤
x
≤
2
π
and
π
6
<
α
<
π
3
.
\frac{\pi}{6} < \alpha < \frac{\pi}{3}.
6
π
<
α
<
3
π
.
Back to Problems
View on AoPS