Let n≥2,n∈N and A0=(a01,a02,…,a0n) be any n−tuple of natural numbers, such that 0≤a0i≤i−1, for i=1,…,n.n−tuples A1=(a11,a12,…,a1n),A2=(a21,a22,…,a2n),… are defined by: ai+1,j=Card{ai,l∣1≤l≤j−1,ai,l≥ai,j}, for i∈N and j=1,…,n. Prove that there exists k∈N, such that Ak+2=Ak.