MathDB
Easy-Moderate Discrete Mathematics Question

Source: IMO Shortlist 1993, Macedonia 3

March 25, 2006
functioncombinatoricstupleSubsetsIMO Shortlist

Problem Statement

Let n2,nNn \geq 2, n \in \mathbb{N} and A0=(a01,a02,,a0n)A_0 = (a_{01},a_{02}, \ldots, a_{0n}) be any nn-tuple of natural numbers, such that 0a0ii1,0 \leq a_{0i} \leq i-1, for i=1,,n.i = 1, \ldots, n. nn-tuples A1=(a11,a12,,a1n),A2=(a21,a22,,a2n),A_1= (a_{11},a_{12}, \ldots, a_{1n}), A_2 = (a_{21},a_{22}, \ldots, a_{2n}), \ldots are defined by: ai+1,j=Card{ai,l1lj1,ai,lai,j},a_{i+1,j} = Card \{a_{i,l}| 1 \leq l \leq j-1, a_{i,l} \geq a_{i,j}\}, for iNi \in \mathbb{N} and j=1,,n.j = 1, \ldots, n. Prove that there exists kN,k \in \mathbb{N}, such that Ak+2=Ak.A_{k+2} = A_{k}.