Let the base 2 representation of x∈[0;1) be x=∑i=0∞2i+1xi. (If x is dyadically rational, i.e. x∈{2nk:k,n∈Z}, then we choose the finite representation.) Define function fn:[0;1)→Z by
fn(x)=j=0∑n−1(−1)∑i=0jxi.Does there exist a function φ:[0;∞)→[0;∞) such that limx→∞φ(x)=∞ and
n∈Nsup∫01φ(∣fn(x)∣)dx<∞?