MathDB
Analysis of dyadic (-1)^{partial sum} sum function

Source: Miklós Schweitzer 2017, problem 8

January 13, 2018
algebrabinary representationnumber baseinequalitiesfunction

Problem Statement

Let the base 22 representation of x[0;1)x\in[0;1) be x=i=0xi2i+1x=\sum_{i=0}^\infty \frac{x_i}{2^{i+1}}. (If xx is dyadically rational, i.e. x{k2n:k,nZ}x\in\left\{\frac{k}{2^n}\,:\, k,n\in\mathbb{Z}\right\}, then we choose the finite representation.) Define function fn:[0;1)Zf_n:[0;1)\to\mathbb{Z} by fn(x)=j=0n1(1)i=0jxi.f_n(x)=\sum_{j=0}^{n-1}(-1)^{\sum_{i=0}^j x_i}.Does there exist a function φ:[0;)[0;)\varphi:[0;\infty)\to[0;\infty) such that limxφ(x)=\lim_{x\to\infty} \varphi(x)=\infty and supnN01φ(fn(x))dx<?\sup_{n\in\mathbb{N}}\int_0^1 \varphi(|f_n(x)|)\mathrm{d}x<\infty\, ?