MathDB
Hard combinatorics problem

Source: Problem 3 from ZIMO 2008

January 21, 2008
combinatorics proposedcombinatorics

Problem Statement

Let A \equal{} \{(a_1,\dots,a_8)|a_i\in\mathbb{N} , 1\leq a_i\leq i \plus{} 1 for each i \equal{} 1,2\dots,8\}.A subset XA X\subset A is called sparse if for each two distinct elements (a1,,a8) (a_1,\dots,a_8),(b1,,b8)X (b_1,\dots,b_8)\in X,there exist at least three indices i i,such that aibi a_i\neq b_i. Find the maximal possible number of elements in a sparse subset of set A A.